THE SOLUTION TO POSITIVE AND NEGATIVE DYSPHOTOPSIA AFTER CATARACT SURGERY RELIES ON NEW IOL DESIGNS.

Dr. H. Holden. October 2017.

BACKGROUND:

Dysphotopsia is not an uncommon problem and can affect up to 20% or more of post cataract surgery patients, with otherwise perfectly performed operations. Fortunately many cases resolve, but some patients remain plagued by the symptoms.

The symptoms of dysphotopsia can be a bright arc of light in the peripheral vision or glare symptoms with an “off the visual axis” point light source (Positive Dysphotopsias or PD). Other versions of dysphotopsia included a dark arc like peripheral shadow or the patient feeling that they have had their peripheral vision constricted (Negative Dysphotopsia or ND).

Current IOL design with ND & PD:

As small incision cataract surgery evolved the plan was to decrease the surgical wound size and use thinner foldable IOL’s to pass through the wounds. A thin IOL, much like thinner lighter glasses, requires a higher refractive index material for any diopter focussing power. The higher the refractive index of the IOL material with respect to the aqueous fluid, the more reflective the IOL surfaces are. In fact if there was such a thing as an IOL with an identical refractive index to the aqueous, it would “optically vanish” when placed in the aqueous. Of course it then would be useless as a refractive element. Aqueous has a refractive index of 1.336.

Currently the refractive index of materials used for IOL’s:

Acrylic, \(n = 1.55 \)

PMMA, \(n = 1.49 \)

Silicone, \(n = 1.46 \)

Of note a natural human crystalline lens has a refractive index of around 1.386 to 1.406.
Negative Dysphotopsia (ND):

Recently Dr. Holladay et al (1) described how ND is the result of a gap in the rays which are not refracted by the anterior IOL surface and the rays that are. This is shown diagrammatically in figure 1, below:

![Mechanism of Negative Dysphotopsia](image1)

However, the experience of ND does not require the presence of the light rays that miss out on being refracted by the IOL. If the light rays do manage to pass anterior to the IOL without interacting with it and reach functional nasal retina, it simply puts a brighter area more peripherally to the grey shadow of the IOL.

Figure 2 below explains this. Any rays peripheral to the ray drawn in red are simply not seen and the IOL effectively casts a retinal shadow in the zone of the retina anterior to this ray.

![Peripheral rays not being refracted by the IOL are not necessary for the induction of Negative Dysphotopsia](image2)
The constricted field of view experienced by patients still happens, regardless of the ray that misses the anterior surface of the IOL. Also the further posteriorly the IOL sits from the iris plane and the cornea, the further posteriorly the shadow will be placed on the retina.

Therefore the position of the anterior refractive surface of the IOL is important.

All cataract surgeons know that the anterior surface of the natural crystalline lens sits significantly more anteriorly in the anterior chamber than the anterior surface of an IOL does after cataract surgery. Often the depth of the anterior chamber after a cataract surgery can appear to be at least twice the depth of its pre-op value. This relates to the fact that the IOL is significantly thinner than the natural lens.

Positive Dysphotopsia (PD):

There is often talk of “internally reflected” and “totally internally reflected” light rays in papers on Dysphotopsia. There is something about these that requires explaining:

A light ray can enter the front surface of the IOL from a very large range of angles especially with a moderately dilated pupil. With the cornea refracting the light too, light rays can potentially enter the IOL which has originated from 90 degrees or more to the temporal side of the visual axis. The field is more restricted on the nasal side, due to the nose shadow.

Total internal reflection:

Any light travelling inside the IOL material at the critical angle or greater than the critical angle, with respect to the normal to the IOL surface it strikes, at any point, cannot escape that surface of the IOL and these rays are reflected back into the IOL. This is the phenomenon of total internal reflection.

Figure 3 below demonstrates how a ray of light inside the IOL can acquire the critical angle or greater. The ray drawn in red shown in figure 3 is totally internally reflected. Any rays equal to or greater than the critical angle, with respect to the normal at the IOL peripheral edge, will be totally internally reflected. This is the effect which makes the edge of a lens or IOL, as viewed from its refractive surfaces, look shiny on the inside. This effect is the cause of “off visual axis” glare sources, which can be troublesome for patients with IOLs. The green lines show the normal to the surfaces:
The critical angles for total internal reflection are close to 59.5 degrees for Acrylic, 63.7 degrees for PMMA and 66.2 degrees for Silicone.

On the other hand as also shown in figure 3, if the rays of light enter obliquely to the IOL edge (the ray drawn in orange) this ray does not reach the critical angle, so when they strike the internal IOL edge they pass through it, out of the IOL’s edge. These rays also get variously refracted at the IOL’s edges, depending on the exact shape of the edge. These rays become the scattered peripheral bright and dark bands of PD.

Figure 4 and 4b below shows a diagrammatic representation of the rays of PD:
The rays of PD shown in green in figure 4 and red in figure 4b, are deviated by the IOL's edge architecture and are not in proper focus and have little meaningful relation to the geometric form of objects in the peripheral field. These rays create dark and light bands of light or “stripes” on the peripheral retina as shown in figure 4b. The exact nature and patterns of the light passing through the IOL edge depends on the edge design. Some of the shadows between the bands of light seen in figure 4b may be mistaken for the shadow of true ND.

Other weaker scattered rays:

Light rays can be partially (or weakly) reflected by an IOL’s convex surface acting as a convex mirror and partially *internally reflected* into the IOL substance by the posterior concave surface (as viewed from inside the IOL) acting as a concave mirror and also this applies to the internal IOL edges. These weak rays are not *total internal reflection*. The reflection from the IOL’s concave inner surface could be regarded as a weak *internal reflection*. These reflections are stronger the higher the refractive index of the IOL material.

Summary of PD & ND:

1) The IOL shadow of ND is the result of peripheral rays from the visual field being refracted or deviated by the IOL, leaving an area of reduced retinal illumination. This shadow is typically noticed on the anterior nasal retina, corresponding to the peripheral temporal visual field from the patient’s perspective. The position of this shadow depends on the physical position of the IOL’s anterior refractive surface.

2) PD is primarily caused by the lens edge architecture. If the incoming rays are oblique, the lens edge transmits these rays to the peripheral retina to generate light and dark stipes. With less oblique rays the lens edge *totally internally reflects* light. Both these ray types are “non functional” as they do not produce an image which clearly relates to object shapes or clear focus in the peripheral vision. Instead they produce symptoms of PD. In addition the shiny or reflective qualities of the IOL surface can also reflect some light. These reflections increase with the refractive index of the IOL material.

While a diffused or opaque edge IOL might improve this situation a little, the information here suggests that the lens edge rays of PD should be absorbed and eliminated in new IOL designs. This will also eliminate the variables of the specific IOL edge shape. The darker zones which are part of PD could in fact represent some variants of ND for some patients.
Currently, with existing lens technology, a rounded edge Silicone IOL (lower refractive index) is better than an Acrylic (higher refractive index) sharp edged IOL, for reducing the symptoms of PD.

3) As noted above, the greater the spacing between the IOL and the Iris, or the more posteriorly the IOL sits, or the thinner the IOL, then the further that the IOL shadow of ND will encroach on the patient’s peripheral visual field. Also the further any bright rays of PD will encroach on the peripheral nasal retinal and peripheral visual field too.

4) The light rays that miss the anterior surface of the IOL simply illuminate the retina peripherally to the IOL shadow of ND, turning the perceived grey constriction of the temporal visual field into a grey band or crescent for some patients. These rays are more likely to get through, the further the IOL sits from the posterior iris plane.

How new IOL’s could be designed to improve ND & PD:

1) Use the lowest refractive index material and the thickest IOL possible consistent with being able to physically fold the IOL and ease of insertion and wound geometry.

While smaller wounds have been advocated to reduce SIA (surgically induced astigmatism), this means thinner optic sized IOL’s and also means increased flow resistance in the irrigation pathway during coaxial phaco. This reduces anterior chamber stability and all other factors equal, increases the chances of capsule rupture. Although, ideally, one might like a 1.8 to 2.5mm wound, it appears that a 3 to 3.5mm wound would accommodate thicker optics IOL’s and still have minimal SIA, which can also be minimized in some cases by selecting the wound location.

2) Since the IOL creates a shadow that is cast over its peripheral edge and that the light rays exiting the peripheral edge of the lens have little meaningful geometric relation to objects in the peripheral visual field and merely create PD, then the light rays exiting the IOL’s peripheral edge are better eliminated by absorption. This involves darkening or blackening the edge of the IOL material within the substance of the IOL, at its periphery.

3) Since all symptoms of PD and ND are worse the more posteriorly the IOL’s anterior refractive surface sits, with respect to the Iris plane, then a thicker IOL design brings the IOL’s anterior surface closer to the posterior iris (more like the natural crystalline lens) for any position of the IOL sitting in the capsular bag plane.

(This explains why reverse optic capture, pushing the IOL anteriorly has helped to treat some patients with dysphotopsia)
The inescapable conclusion is that the cure for ND & PD is to change the design of current IOL's.

The available information suggests that it is better to aim for low refractive index material and thicker IOL's and a little larger wound geometry to insert them (if necessary) and to darken the IOL edge to absorb the rays that cause PD. This idea is the opposite to what has been done by manufactures so far, which was to “diffuse the rays of PD” by having a frosted IOL edge and rounding the edge. I believe these non-optically functional and distracting rays are better absorbed instead.

It is also helpful, that whatever haptic design is used, that the haptics are darkened too, along with the IOL edge.

A diagram of what these “next generation IOL’s” would look like is shown below. The haptics shown are for illustrative purposes and could be any shape. Also with a dark peripheral edge integral to the IOL body, the IOL edge shape design becomes unimportant and could be whatever is easier to manufacture. Ideally the darkening of the IOL perimeter must be integral and diffused into the IOL material to absorb any photons heading toward the edge.

![Diagram of IOL design](image.png)

Images/drawings of dark edge thick optics IOL's are Copyright Dr. H.Holden. Oct, 2017. For permission to use these images contact Dr. Holden at: Hugo.Holden9@gmail.com

Reference:

**